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TreeAgePro model calibration with Scientific Python. 

Why is model calibration required? 

Clinical data often is limited to patient counts (proportions) by state at 2 or more points of time, such as 

at the beginning of the study and then at the end of 1 year, 2 years, etc. 

When more than 2 states are involved there is no easy way to estimate the individual state to state 

transitions (either exponential, Weibull, etc.), since a longitudinal state to state transition times by 

individual would be required.  Often this level of data is not available, the only option is to assume that 

the transitions between states follow a particular distribution and then adjust the distribution 

parameters to try to generate simulated state proportions at desired times to match as closely as 

possible to the observed proportions. 

Scientific Python library includes about 10 different optimization algorithms that can be used to perform 

model calibration by searching for distribution parameters that minimize the error between the 

simulated proportions and observed proportions. 
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Overview of the Calibration process 

The following diagram presents the flow of the calibration process.  TreeAge Pro model has to be 

configured with appropriate payoffs and/or trackers which can be evaluated by the Python script. 

The top part of the flow chart identifies the manual steps that need to be performed with TreeAge Pro 

model (Green color steps) and Python script (Orange color steps).  One the Optimization script is 

launched in the bottom part of the flow chart, the execution of steps is performed by TreeAge Pro and 

Python functions indicated by the corresponding colors. 

Manual Setup Steps

Green - TreeAge Pro 
actions

Orange – Python 
Script actions

Python Script 
Execution steps

Define the set of Observed Data 
(e.g. 1,2,3 year proportions)

Define TP Model Structure and 
Transition Parameters

Define Payoffs or Trackers that 
contain TP model simulated 

proportions

Define initial guess values
for transition parameters

Start SciPy Script

Start Optimization Algorithm

Set Parameter values within 
TP model

Run Analysis – Rankings, Cohort or 
Microsimulation

Read TP report and calculate 
Goodness of Fit function

Optimization Goal or Max 
Iterations Reached?

Develop next set of 
parameter values

Report Estimated
Parameters and Stop
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How good are the optimization algorithms? 

There are many optimization algorithms and it is important to understand their strengths and 

weaknesses.  All optimization algorithms suffer to a lesser or greater degree from finding a local 

minimum, rather than global minimum.  Existence of local minima is a function of the model structure 

and distributions (hazard functions) used for state transition. 

It is informative to create a reference model that uses particular distribution parameters and generates 

the cohort proportions that can be used as the observed set.  This set of cohort proportions at different 

times is then used as the input to the optimization problem. 

Different initial parameter values can be used to assess how good the optimization algorithm is at 

finding the reference parameters.  The combination of starting initial parameter and different 

algorithms and their options are endless, so it is important to have a good test environment for testing 

optimizer performance. 

Goodness of Fit functions: 

There can be many different formulations of fitness functions.  Python optimization algorithms rely on 

user defined function that will be minimized.  In the case of model calibration our objective is to find 

transition parameters which minimize the difference between observed (given) state proportions at 

time periods and the proportions generated by the model with estimated parameters, starting with the 

initial parameter guesses. 

A simple goodness of fit function is a sum of squares of differences between observed and simulated 

cohort proportions: 

𝐺𝑜𝐹 =  ∑ ∑(𝑝̂𝑖,𝑘 − 𝑝𝑖,𝑘)2
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Where, 

𝑝̂𝑖,𝑘 – is the observed (given) proportion of the cohort at time i and at state k 

𝑝𝑖,𝑘 – is the simulated proportion of the cohort at time i and at state k  

Other goodness of fit functions could be formulated using root mean square of error or maximum-

likelihood function.  Selection of goodness of fit function, will also have an impact on the performance of 

the particular optimization algorithm. 

Model calibration science or art? 

Certainly there is quite a bit of experimentation involved with choosing appropriate optimization 

algorithm, appropriate choice of initial parameter estimates and goodness of fit objective function.  It is 

not possible to provide an answer to what are the best choices for a given model calibration task. 

However, some general observations may be helpful in preparing a model for calibration. 
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1. When possible use expected value calculations to establish cohort proportions rather than 

microsimulation.  Microsimulation generate “noisy” data which works against the optimization 

algorithm which will likely converge on a local minimum.  Rankings and Cohort analyses use 

deterministic cohort calculations reducing the estimate noise. 

2. Using seeding with microsimulation might help reduce the level of noise. (To be tested 

experimentally). 

3. Build a simpler cohort model and try to calibrate it first establishing a better set of parameters 

that could be used in the microsimulation version of the model. 

4. Build a model with assumed parameters, generate observed results and then try different 

calibration algorithms and initial guess to see how well different algorithms can “recover” the 

correct parameters. (On-going experiment). 


