
1

TreeAgePro model calibration with Scientific Python.

Why is model calibration required?

Clinical data often is limited to patient counts (proportions) by state at 2 or more points of time, such as

at the beginning of the study and then at the end of 1 year, 2 years, etc.

When more than 2 states are involved there is no easy way to estimate the individual state to state

transitions (either exponential, Weibull, etc.), since a longitudinal state to state transition times by

individual would be required. Often this level of data is not available, the only option is to assume that

the transitions between states follow a particular distribution and then adjust the distribution

parameters to try to generate simulated state proportions at desired times to match as closely as

possible to the observed proportions.

Scientific Python library includes about 10 different optimization algorithms that can be used to perform

model calibration by searching for distribution parameters that minimize the error between the

simulated proportions and observed proportions.

2

Overview of the Calibration process

The following diagram presents the flow of the calibration process. TreeAge Pro model has to be

configured with appropriate payoffs and/or trackers which can be evaluated by the Python script.

The top part of the flow chart identifies the manual steps that need to be performed with TreeAge Pro

model (Green color steps) and Python script (Orange color steps). One the Optimization script is

launched in the bottom part of the flow chart, the execution of steps is performed by TreeAge Pro and

Python functions indicated by the corresponding colors.

Manual Setup Steps

Green - TreeAge Pro
actions

Orange – Python
Script actions

Python Script
Execution steps

Define the set of Observed Data
(e.g. 1,2,3 year proportions)

Define TP Model Structure and
Transition Parameters

Define Payoffs or Trackers that
contain TP model simulated

proportions

Define initial guess values
for transition parameters

Start SciPy Script

Start Optimization Algorithm

Set Parameter values within
TP model

Run Analysis – Rankings, Cohort or
Microsimulation

Read TP report and calculate
Goodness of Fit function

Optimization Goal or Max
Iterations Reached?

Develop next set of
parameter values

Report Estimated
Parameters and Stop

3

How good are the optimization algorithms?

There are many optimization algorithms and it is important to understand their strengths and

weaknesses. All optimization algorithms suffer to a lesser or greater degree from finding a local

minimum, rather than global minimum. Existence of local minima is a function of the model structure

and distributions (hazard functions) used for state transition.

It is informative to create a reference model that uses particular distribution parameters and generates

the cohort proportions that can be used as the observed set. This set of cohort proportions at different

times is then used as the input to the optimization problem.

Different initial parameter values can be used to assess how good the optimization algorithm is at

finding the reference parameters. The combination of starting initial parameter and different

algorithms and their options are endless, so it is important to have a good test environment for testing

optimizer performance.

Goodness of Fit functions:

There can be many different formulations of fitness functions. Python optimization algorithms rely on

user defined function that will be minimized. In the case of model calibration our objective is to find

transition parameters which minimize the difference between observed (given) state proportions at

time periods and the proportions generated by the model with estimated parameters, starting with the

initial parameter guesses.

A simple goodness of fit function is a sum of squares of differences between observed and simulated

cohort proportions:

𝐺𝑜𝐹 = ∑ ∑(𝑝̂𝑖,𝑘 − 𝑝𝑖,𝑘)2

𝑚

𝑘

𝑛

𝑖

Where,

𝑝̂𝑖,𝑘 – is the observed (given) proportion of the cohort at time i and at state k

𝑝𝑖,𝑘 – is the simulated proportion of the cohort at time i and at state k

Other goodness of fit functions could be formulated using root mean square of error or maximum-

likelihood function. Selection of goodness of fit function, will also have an impact on the performance of

the particular optimization algorithm.

Model calibration science or art?

Certainly there is quite a bit of experimentation involved with choosing appropriate optimization

algorithm, appropriate choice of initial parameter estimates and goodness of fit objective function. It is

not possible to provide an answer to what are the best choices for a given model calibration task.

However, some general observations may be helpful in preparing a model for calibration.

4

1. When possible use expected value calculations to establish cohort proportions rather than

microsimulation. Microsimulation generate “noisy” data which works against the optimization

algorithm which will likely converge on a local minimum. Rankings and Cohort analyses use

deterministic cohort calculations reducing the estimate noise.

2. Using seeding with microsimulation might help reduce the level of noise. (To be tested

experimentally).

3. Build a simpler cohort model and try to calibrate it first establishing a better set of parameters

that could be used in the microsimulation version of the model.

4. Build a model with assumed parameters, generate observed results and then try different

calibration algorithms and initial guess to see how well different algorithms can “recover” the

correct parameters. (On-going experiment).

